526 research outputs found

    Von K\'arm\'an vortex street in a Bose-Einstein condensate

    Full text link
    Vortex shedding from an obstacle potential moving in a Bose-Einstein condensate is investigated. Long-lived alternately aligned vortex pairs are found to form in the wake, as for the von K\'arm\'an vortex street in classical viscous fluids. Various patterns of vortex shedding are systematically studied and the drag force on the obstacle is calculated. It is shown that the phenomenon can be observed in a trapped system.Comment: 4 pages, 5 figure

    Order-disorder oscillations in exciton-polariton superfluids

    Full text link
    The dynamics of an exciton-polariton superfluid resonantly pumped in a semiconductor microcavity are investigated by mean-field theory. Modulational instability develops into crystalline order and then ordered and disordered states alternately form. A supersolid-like state is also found, in which superflow coexists with crystalline order at rest.Comment: 5 pages, 3 figures, 6 movie

    B\'enard-von K\'arm\'an vortex street in an exciton-polariton superfluid

    Full text link
    The dynamics of an exciton--polariton superfluid resonantly injected into a semiconductor microcavity are investigated numerically. The results reveal that a B\'enard--von K\'arm\'an vortex street is generated in the wake behind an obstacle potential, in addition to the generation of quantized vortex dipoles and dark solitons. The vortex street is shown to be robust against a disorder potential in a sample and it can be observed even in time-integrated measurements.Comment: 4 pages, 3 figure

    Pattern formation without heating in an evaporative convection experiment

    Get PDF
    We present an evaporation experiment in a single fluid layer. When latent heat associated to the evaporation is large enough, the heat flow through the free surface of the layer generates temperature gradients that can destabilize the conductive motionless state giving rise to convective cellular structures without any external heating. The sequence of convective patterns obtained here without heating, is similar to that obtained in B\'enard-Marangoni convection. This work present the sequence of spatial bifurcations as a function of the layer depth. The transition between square to hexagonal pattern, known from non-evaporative experiments, is obtained here with a similar change in wavelength.Comment: Submitted to Europhysics Letter

    Enhancement of thrust reverser cascade performance using aerodynamic and structural integration

    Get PDF
    This paper focuses on the design of a cascade within a cold stream thrust reverser during the early, conceptual stage of the product development process. A reliable procedure is developed for the exchange of geometric and load data between a two dimensional aerodynamic model and a three dimensional structural model. Aerodynamic and structural simulations are carried out using realistic operating conditions, for three different design configurations with a view to minimising weight for equivalent or improved aerodynamic and structural performance. For normal operational conditions the simulations show that total reverse thrust is unaffected when the performance of the deformed vanes is compared to the un-deformed case. This shows that for the conditions tested, the minimal deformation of the cascade vanes has no significant affect on aerodynamic efficiency and that there is scope for reducing the weight of the cascade. The pressure distribution through a two dimensional thrust reverser section is determined for two additional cascade vane configurations and it is shown that with a small decrease in total reverse thrust, it is possible to reduce weight and eliminate supersonic flow regimes through the nacelle section. By increasing vane sections in high pressure areas and decreasing sections in low pressure areas the structural performance of the cascade vanes in the weight reduced designs, is improved with significantly reduced levels of vane displacement and stress

    Apparatus for real-time acoustic imaging of Rayleigh-Benard convection

    Full text link
    We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in non-destructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sound via refraction of acoustic plane waves passing vertically through the fluid layer. The apparatus has been validated by observing convection rolls in both silicone oil and ferrofluid.Comment: 20 pages, 11 figures, submitted to the Review of Scientific Instrument

    Phase instabilities in hexagonal patterns

    Get PDF
    The general form of the amplitude equations for a hexagonal pattern including spatial terms is discussed. At the lowest order we obtain the phase equation for such patterns. The general expression of the diffusion coefficients is given and the contributions of the new spatial terms are analysed in this paper. From these coefficients the phase stability regions in a hexagonal pattern are determined. In the case of Benard-Marangoni instability our results agree qualitatively with numerical simulations performed recently.Comment: 6 pages, 6 figures, to appear in Europhys. Let

    Rhombic Patterns: Broken Hexagonal Symmetry

    Get PDF
    Landau-Ginzburg equations derived to conserve two-dimensional spatial symmetries lead to the prediction that rhombic arrays with characteristic angles slightly differ from 60 degrees should form in many systems. Beyond the bifurcation from the uniform state to patterns, rhombic patterns are linearly stable for a band of angles near the 60 degrees angle of regular hexagons. Experiments conducted on a reaction-diffusion system involving a chlorite-iodide-malonic acid reaction yield rhombic patterns in good accord with the theory.Energy Laboratory of the University of HoustonOffice of Naval ResearchU.S. Department of Energy Office of Basic Energy SciencesRobert A. Welch FoundationCenter for Nonlinear Dynamic
    • 

    corecore